
A Practical Measure of FPGA Floating Point
Acceleration for High Performance Computing

John D. Cappello
Optimal Design, Inc.

Sewell, NJ
jcappello@optimal-design.com

Dave Strenski
Cray, Inc.

Ypsilanti, Michigan
stren@cray.com

Keywords-FPGA; matrix multiplication; high performance

computing; floating point arithmetic; multiply-accumulate; systolic
array; hardware acceleration; GFLOPS; Xilinx; Virtex-7; DSP48;
heavily-pipelined accumulators

I. INTRODUCTION
High performance computing (HPC) is a realm of computer

science that relies on advanced, highly parallel computing
systems applied specifically to assist scientists, engineers, and
even financial analysts in executing complex, arithmetically-
intensive algorithms for solving problems in their respective
areas of study and application. Computer architectures geared
toward HPC are typically comprised of an array of processing
elements (PEs) configured to accelerate these complex
algorithms in a manner that takes advantage of the aggregate
performance benefits of parallelism.

As recently as ten years ago, a PE was simply a
microprocessor operating within the limitations of the
venerable von Neumann computer architecture. Today, the
HPC user has three PE technologies to choose from: multi-core
processors (MCPs), graphics processing units (GPUs), and
field-programmable gate arrays (FPGAs). For more custom-
targeted computing needs, the Application-specific IC (ASIC)
or digital signal processor (DSP) devices have been utilized as
a rare fourth option.

Many issues come into play when selecting a PE for a
particular application, such as performance, power, cost,
complexity, adaptability to a range of algorithms, and

conformance to a user's computer environment. It also helps if
the solution adheres to existing standards and protocols. This is
where FPGAs have lagged behind. Despite three decades on
the market, designing for an FPGA still requires a set of niche
skills and use of non-standard development tools that typically
fall outside the expertise of most HPC users. Furthermore, the
complexity of an FPGA's development cycle makes pushing its
theoretical performance limits challenging even to experienced
developers, giving MCPs and GPUs and their standard
development platforms a clear advantage in the eyes of many
system architects and HPC users.

Nonetheless, there are overwhelming benefits to using
FPGAs; in some cases, the development effort is worth the
investment. An FPGA allows the construction of hardware
architectures that are fine-tuned toward specific applications.
Bioinformatic algorithms such as Smith-Waterman which are
commonly used for DNA sequencing alignment match up well
with an FPGA’s spatial and temporal parallelism capability
[16]. An FPGA’s superior energy efficiency makes it a
competitive choice for implementing Basic Linear Algebra
Subroutines (BLAS), a key library of functions for scientific
applications [6]. For molecular modeling, an FPGA’s dedicated
pipeline structures, low latency communication threads, and
flexible algorithmic restructuring makes it a preferred platform
for modeling the iterative Newtonian interactions of atoms and
molecules [15]. The financial world has made huge
investments in FPGA technology for High Frequency Trading
(HFT) applications, specifically to take advantage of an
FPGA’s ability to handle electronic trade data with very low
latency and minimal jitter [17].

 High-end FPGA architectures are generally comprised of
configurable logic blocks, embedded ram, and hard arithmetic
cores arranged in a semi-regular pattern. With its sea of
reconfigurable logic, the FPGA is the ultimate sandbox for
digital computing, yielding unrivaled flexibility and an inherent
parallelism that cannot be approached by any other technology.

As vast as this potential seems for FPGAs, there are
practical limitations when it comes to crafting an actual design.
This paper demonstrates these limitations by describing the
implementation of a floating point matrix multiply function—a
workhorse of many scientific algorithms—in an architecture
designed to take full advantage of an FPGA's arithmetic
computing power. The matrix multiply is a standard linear
algebra function that greatly benefits from parallelism, where
tremendous performance gains can be had when accelerated

Abstract—A key enabler for Field Programmable Gate
Arrays (FPGAs) in High Performance Computing (HPC) has
been the addition of hard arithmetic cores. These “slices of DSP”
dedicated to accelerated number crunching allow FPGAs to
deliver more computing muscle, especially for floating point
algorithms. This paper compares how an FPGA's performance in
a practical HPC application measures up to its theoretical
capacity. The implementation of a floating point matrix
multiplication algorithm based on a 12x12 MAC (Multiply-
Accumulate) array targeting the Xilinx Virtex 7 XT family is
described. Several design techniques were used to ensure
uninterrupted systolic operation of the array throughout
execution, including a novel approach to handling heavily
pipelined accumulators, as well as a scheme for overcoming the
inherent inefficiencies of DDR3 memory. The result is a sustained
"practical" performance range of 144-180 GFLOPS, compared
to the target device's "theoretical" range of 257-290 GFLOPS.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

within an HPC platform. It's also used as a standard benchmark
for evaluating the performance of HPC machines.

The flow of this paper begins with a look at related work on
matrix multiplication implementations in FPGAs, followed by
an analysis of an FPGA's theoretical limits for both optimal
usage of resources and specifically for matrix multiplication.
Next, the mechanism for mapping the matrix multiply
algorithm onto FPGA fabric for this implementation is
described, with a look at several issues that were addressed for
overcoming I/O bound performance. Several design techniques
that were employed to ensure uninterrupted systolic operation
of the MAC array are described, including the handling of
heavily-pipelined accumulators, devising an optimal schedule
for feeding matrix data to the MAC array, and maximizing
DDR3 memory efficiency. The paper concludes with the
floorplanning strategy behind packing as many MACs onto the
FPGA die as possible while meeting timing closure, along with
potential opportunities for squeezing more performance out of
the design.

II. RELATED WORK

Numerous architectures for implementing matrix
multiplication onto FPGAs have been described in recent years
[3], [5], [6], [7], [11]. The motivations behind these efforts
have varied, ranging from creating an efficient, scalable, and
high performing architecture, to evaluating how an FPGA
compares to CPUs, MCPs, and GPUs for HPC applications.

With the ubiquitous matrix multiply algorithm being used
for this demonstration, many of the same tradeoffs and issues
discussed in previous work came into play in this design, such
as I/O bound performance, matrix blocking, and the importance
of data re-use. But there were architectural differences. While
others adopted a linear array of PEs with data streaming to and
from the array through a single endpoint PE, this
implementation is based on a 2D array of PEs, with data
distributed into ram banks feeding the array's rows and
columns. In other work, a host processor interacted directly
with the FPGA throughout execution, downloading and
uploading data directly with the FPGA's internal PE array. In
this architecture, the FPGA executes the algorithm
autonomously while uploading and downloading data with
tightly-coupled DDR3 memory.

III. PUSHING THE THEORETICAL PERFORMANCE ENVELOPE

A key aspect to this demonstration is the use of floating
point arithmetic, a computing method required for many
scientific applications where dynamic range and accuracy are
critical. Not long ago, FPGAs were grossly inefficient with
these types of calculations; the amount of logic needed to
realize multiplication was too taxing on fabric resources.

Times have changed. One of the greatest enablers of
FPGAs for HPC today is the proliferation of hard multiplier
cores now available in many high performance FPGA families.
This has boosted an FPGA's capabilities considerably in
performing floating point computations.

The hard multiplier core offered by the Xilinx Virtex 7
Series family—the highest performing Xilinx family on the

market today—is the DSP48. The DSP48 contains a 25x18
multiplier, a 48-bit accumulator, and an assortment of flexible
options for implementing a number of arithmetic operations.
It's also the perfect digital hub for creating a floating point
MAC unit, a key processing element for matrix multiplication.

The device targeted for this implementation was the Virtex-
7 XC7VX690T, which contains as many DSP48s (3,600) as
any FPGA offered by Xilinx. The number of DSP48s required
to realize a single MAC unit—critical to fitting the maximum
number of MACs on a single die—depends on the desired
precision and implementation scheme. The LogiCORE IP
Floating-Point Operator tool [9] from the Xilinx ISE
development platform can create an assortment of functional
floating-point operations with various speed-area options, all of
which impact the number of DSP48s realized. For instance, a
double precision floating point multiplier configured for high
speed and maximum usage of hard multipliers within the
XC7VX690T requires 11 DSP48s.

According to theoretical analysis in [1], the Virtex 7 Series
FPGAs can perform double precision floating point arithmetic
about 4.2 times faster than a 16-core MCP. Based on a scheme
that allocates the available fabric resources with various
combinations of arithmetic operator types configured in an
assortment of realization schemes, the theoretical peak
performance of the XC7VX690T was measured at 290
GFLOPS.

This paper extends this theoretical research by
implementing as large of a MAC array as practical in the same
device. With one multiplier and one adder needed per MAC,
matrix multiplication requires a homogenous set of MAC units
for repeatability, consistency, and efficiency. For this
implementation, each adder and multiplier was configured for
maximum usage of DSP48s to achieve the highest clock
frequency possible. (Later we'll see that "highest frequency"
doesn't necessarily lead to highest overall performance.)

To calculate the theoretical performance limit of the matrix
multiply application for the XC7VX690T, the maximum
number of MACs that can fit is determined, along with a target
operating frequency. As mentioned above, each multiplier
utilizes 11 DSP48s. Similarly, a floating point adder requires
three DSP48s. Together, these operators make up a floating
point MAC unit encompassing 14 DSP48s. Using simple math,
the number of MACs that could theoretically be accommodated
inside a XC7VX690T is 257 (3600 DSP48s / 14 per MAC).
The target clock rate depends on the performance
specifications. For XC7VX690T in a -3 (highest) speed grade
[10], it was judged that a clock frequency of 500 MHz could be
attainable with reasonable effort. Hence, the overall theoretical
peak performance of a floating point matrix multiply algorithm
implemented in the XC7VX690T-3 is calculated to be 257
GFLOPS (2 FLOPs per MAC x 257 MACs x 500MHz), about
11% less than the optimal combination of adder/multiplier
types calculated in [1].

IV. PROJECTING MATRIX MULTIPLICATION ONTO AN FPGA
The following example demonstrates how the matrix

multiply architecture was devised for this implementation.

2

In Figure 1, two 4x4 matrices denoted as A and B are
multiplied together to form a set of results in the form of a C
matrix. Each C matrix term is the result of the dot product
calculation of an A matrix row vector with a B matrix column
vector. Since a dot product calculation is nothing more than a
sequence of multiplication results summed together, each of the
16 dot products required to produce the 4x4 C matrix can be
parallelized by mapping them to dedicated arithmetic blocks
configured as MAC units.

Figure 1. Mapping of matrix multiply to an FPGA MAC array

In the previous section, it was calculated that a maximum of
257 MACs could theoretically fit inside a XC7VX690T. This
would be enough to contain a 16x16 MAC array. From a
practical standpoint, however, it would be extremely difficult to
get an actual implementation close to this theoretical limit.
There are several reasons why, and each plays a role in the
final architecture. It’s a process of scaling down what is
theoretically possible in an FPGA to what is practical.

V. OVERCOMING I/O BOUND PERFORMANCE

Fabrication technology strongly influences the maximum
clock frequency and the total number of MACs that could fit on
a device, two major factors in determining overall performance
of the matrix multiply algorithm. But the greatest architectural
impact is I/O.

Targeting this algorithm for HPC, large amounts of data
would be expected to be transferred to and from an FPGA’s I/O
pins continuously throughout execution. An I/O link’s inability
to keep pace with the core processing power of the FPGA is a
major deterrent to aggregate performance. Because of the
nature of how I/O technology will always lag behind on-chip
processing from a raw processing power standpoint, a matrix
multiplication implementation will become I/O bound unless
this interaction can be handled efficiently enough to be
classified as "background traffic."

For this implementation, the I/O bound situation as related
to a host interface was eliminated by adding local bulk memory
to the FPGA in the form of two DDR3 modules: a 4GB DIMM
for storing the input A and B matrices, and a 2GB DIMM for
holding the C matrix results. These memories essentially

decouple a host’s interaction from impacting the FPGA's
overall performance.

The MAC array's performance can still become I/O bound
with regard to the DDR3 links. Three architectural
enhancements were employed to alleviate this: blocking, data
re-use and local MAC cache. These will be described in the
following sections.

VI. MATRIX MULTIPLICATION ARCHITECTURE

The core of the matrix multiplication architecture is a
12x12 systolic MAC array, shown in Figure 2. A/B matrix data
are uploaded from DDR3 memory and distributed into ram
banks that act as gateways into the array's rows and columns. A
second DDR3 memory link acts as a depository for the array's
C matrix data results.

Figure 2. Top view of the matrix multiplication architecture

The key to the array's systolic operation is the manner in
which the A/B matrix data is distributed and sequenced, which
ultimately determines how the array is able to perform 144 dot
product calculations in parallel throughout its execution.

Data is staggered into the array and propagated through
each linear chain so that it can be re-used by each MAC in its
path. Figure 3 shows how the systolic operation would begin,
with each cycle time t{i} representing a systolic beat. The array
becomes saturated shortly after startup and remains so until
ramping down toward the end of its execution. Because of the
long duration of performing a matrix multiplication for very
large arrays, the startup and ramp down times are negligible
when factored into overall performance.

Once a MAC has completed a dot product calculation for a
given set of vector data, it will either deposit the result into its
local cache as a "partial sum" to be accumulated later for

3

subsequent dot products, or it will output the result as a "final
sum."

Several additional design techniques were needed to ensure
that the MAC array operates in systolic fashion and without
interruption throughout its execution. These are discussed in
the next few sections.

Figure 3. The start of the MAC array's systolic operation

VII. HANDLING HEAVILY-PIPELINED ACCUMULATORS

The maximum frequency that an FPGA design can be
clocked is by definition limited by that design's slowest
combinatorial path. A designer can raise the headroom on
clock frequency, and in most cases, on overall performance, by
adding pipeline registers strategically throughout the various
hardware structures of the architecture.

Complex functions such as multipliers and adders typically
require many layers of combinatorial logic. The more
complicated the function, the more pipeline stages needed in
order to achieve a certain level of performance. [For a
component replicated many times in a design such as in an
array, additional pipelining could actually be a detriment to
performance because of the increased area; this is addressed in
section XI, "Squeezing more performance."]

With pipelining comes latency. A double precision floating
point multiplier configured for maximum clock rate (as
generated by the Xilinx tools while targeting a Virtex-7 device)
contains 16 pipeline stages, corresponding to a latency of 16
cycles. The ramifications of interfacing with a heavily
pipelined multiplier in a parallel processing environment is
minimal in that its inputs and outputs could still be streamed
continuously at its clock rate; the designer needs only to
account for the fixed latency as to when to expect valid data on
its output.

On the other hand, a heavily pipelined accumulator presents
a much greater challenge and has an acute impact on the

overall architecture. Unlike the multiplier, data can't just be
streamed into a heavily pipelined accumulator because each
sum it produces needs to be fed back immediately into one of
its inputs to satisfy the accumulate operation. It’s a classic
dilemma for system designers and has been thoroughly
investigated [2], [4], [13], [14]. The simplest option, sufficient
for most low performance applications, is to simply delay the
input stream as each accumulation operation runs its course.
But for higher performance, this solution would cripple data
throughput. Another option is to replace the accumulator with
an adder tree fed by an array of multipliers so that the dot
product multiplications are no longer accumulated at a single
point, eliminating the feedback requirement. But adder trees
take up huge amounts of resources that drastically reduce the
number of MACs that could fit in the FPGA, which in turn
shrinks overall performance. Other more complex solutions
have been proposed [2], [4], [13], [14].

For this implementation, a special technique was adopted
that didn't require the input stream to be delayed, nor did it
require additional arithmetic resources. It’s called accumulator
time-sharing. Instead of sending a continuous stream of
multiplier results into an accumulator one set at a time, where a
"set" corresponds to a single dot product calculation, multiplier
results from multiple sets are interleaved in a manner which
allows the accumulator to be time-shared. The interleaving
eliminates the need to use an adder's result immediately, at
least from one cycle to the next. Instead, the adder results are
stored in local cache for subsequent feedback into the
accumulator during a later cycle.

The number of sets configured to time-share the
accumulator must be greater than the latency of the
accumulator, plus additional cycles to account for the path of
partial sums as they are propagated back into the accumulator.
For this application, 25 shared sets was determined to be more
than enough to support a heavily pipelined, 14-stage adder
while encompassing all latencies associated with the
propagation chain.

VIII. BLOCK MATRIX ROLLING SCHEDULE

A "Block Matrix Rolling Schedule" defines the pre-
determined sequence of A and B block matrices that are
uploaded from DDR3 memory and consumed by the MAC
array throughout the matrix multiply execution. This section
describes how the schedule was derived, with the primary goal
of keeping the systolic MAC array running without
interruption.

Performing a matrix multiplication of two 12x12 arrays
isn't an operation that would provide much benefit if
accelerated in hardware. But performing a matrix
multiplication of two 12,000x12,000 arrays would. To handle
very large arrays, the FPGA processes smaller blocks of the
arrays in a technique called matrix blocking. To demonstrate
how matrix blocking works, consider a 12x12 matrix
multiplication shown in Figure 4.

The upper left term {0,0} of the C matrix is calculated by
performing a dot product on the first row vector of the A matrix
with the first column vector of the B matrix.

4

Figure 4. Sample dot product for 12x12 matrix multiply

Now suppose this 12x12 matrix multiplication is to be
performed on a 4x4 MAC array. One strategy is to split the
12x12 arrays into sixteen 4x4 blocks, then perform a series of
4x4 matrix multiplies directly on the 4x4 MAC array.
Calculating the {0,0} C term would then require four 4x4
matrix multiplies, as shown in Figure 5. After each matrix
multiply, a partial sum is generated each time the A block rolls
right in conjunction with the B block rolling down. The FPGA
would maintain a running set of partial sums until a final C
term result was reached.

However, this plan breaks down performance-wise if
applied literally for very large arrays. The I/O demand for
uploading A/B matrix data and feeding it into the MAC array
would far exceed the capable bandwidth of the DDR3 link
supplying the data, causing the array to stall periodically and
degrading overall performance.

Figure 5. Matrix Blocking: 12x12 array split into sixteen 4x4 blocks

To see this, consider the matrix multiplication of two
12,000x12,000 arrays on a 12x12 MAC array. In this scenario,
each of the large arrays is processed in 12x12 blocks to match
the MAC array. Using the matrix blocking procedure
demonstrated above, the upper left C array term {0,0} would
be calculated from a series of one thousand 12x12 matrix
multiplies performed similar to the flow in Figure 5.

This sequence is functionally sound. However, if the A/B
"consumption rate"—i.e. the rate that data is consumed by the
MAC array—is compared to practical DDR3 link rates, it can
be shown that the MAC array would have to stall periodically
waiting for new A/B data to be uploaded from off-chip
memory.

Consider that a standard DDR3-1600 64-bit DIMM module
operates at a maximum line rate of 102 Gbps. Because of the
inefficiencies of DDR3 technology related to inherent latencies
[8], a 50% efficiency rate is deemed a reasonable goal for this
link. This would pin the maximum allowed rate of uploading
A/B matrix data at 51 Gbps.

The A/B consumption rate is calculated by taking the total
number of data bits consumed by the MAC array over a
specific time interval. For the block matrix rolling schedule
described above, since new A and B matrix blocks are required
for every 12x12 matrix multiplication, the time of a single
matrix multiply, 24 nanoseconds (12 systolic clock cycles @
500 MHz), is the interval used for consumption calculation.
Two double precision floating point matrix blocks contain
18,432 bits (12x12 array x 2 x 64 bits). The corresponding A/B
consumption rate is therefore 768 Gbps (18,432 / 24nsec), a
rate which far exceeds the 51 Gbps limit set for the DDR3 link.

If the interleaving method required to handle the heavily
pipelined accumulators is taken into account, the consumption
rate can be reduced significantly. A new rolling schedule is
introduced below which interleaves 25 dot products at one time
while time-sharing the accumulator. Instead of the A and B
blocks rolling in conjunction with each other, the A block is
kept static while the B block is rolled horizontally 25 times, as
shown in Figure 6.

Figure 6. Static “A” block with rolling “B” block

Keeping the A block static relieves some of the I/O
demand; instead of 50 blocks needed for 25 matrix multiplies,
only 26 (1A + 25B) are needed. However, this consumption
rate (384 Gbps) is still too excessive, though it is important to
note that the introduction of data re-use made a significant
contribution here in reducing the I/O demand by 50%. But
clearly more data re-use is needed.

5

It turned out that the strategy for transferring only the final
results from the array off chip to its own output DDR3 memory
helped reduce the A/B consumption rate to a satisfactory level.
For efficiency, it was decided early on that partial C results
should not be cached to external DDR3 memory, and that only
the final results are to be transferred off chip once they have
been obtained. This decision reduced the overall design
complexity as well as eliminated the write path from the output
DDR3 link to the MAC array–greatly improving overall layout
and performance margins.

This strategy also required each MAC to maintain a set of
partial sums locally until final sums are reached. How many
sums should be stored? The fabric resources would determine
this. The fundamental size of an embedded block ram (known
as BRAM) inside the Virtex 7 Series family is 512x32.
Considering that the XC7VX690T has a capacity of 2,940
BRAMs, it was deemed reasonable to allocate two BRAMs per
MAC to hold up to 512 64-bit sums locally. The 512x64 cache
ram would then be able to hold partial sums for 20 groups of
25 time-shared dot products at one time.

With this allocation, a final rolling schedule can be
described. This schedule is composed of five concentric loops.
The first three loops are shown graphically in Figure 7.

Figure 7. First three loops of block matrix rolling schedule

The first loop, ALPHA, corresponds to the time-sharing of
25 consecutive dot products, where a single A block is
multiplied across 25 B blocks. The second loop, BETA,
involves the local cache parameters described above. Since 20
sets of 25 dot products are to be cached in each MAC at one
time, BETA essentially repeats ALPHA 20 times for 20
different A blocks, but for the same set of 25 B blocks.

Each BETA loop represents a snapshot of the blocks of data
that can be cached inside the FPGA at one time. Hence, this
period is the basis for calculating the maximum A/B
consumption rate for this rolling schedule. With 45 blocks
processed over 500 matrix multiplies (20 A x 25 B), the
calculated consumption rate is 34.5 Gbps (45x12x12x64 / 500
x 24 nsec), well within the stated DDR3 link goal of 51 Gbps.
This means that for this block matrix rolling schedule, as long
as the DDR3 link for uploading A/B matrix data can run at an
efficiency of at least 50%, there should be plenty of margin for
the systolic array to churn uninterrupted.

IX. MAXIMIZING DDR3 MEMORY EFFICIENCY

DDR3 memories are streamlined to operate at a minimum
burst length of eight data words. Any access to the memory that
isn’t a multiple of eight leads to wasted cycles and link
inefficiency. This would typically be a performance obstacle
for random memory accesses of varying sizes. But for this
implementation, the DDR3 bursts are continuous and long
enough such that any inefficiency is negligible.

A more common—and often underestimated—detriment to
DDR3 efficiency are the inherent latencies associated with
activation and precharge times as memory rows are accessed.
These latencies are relatively slow compared to the link's
maximum burst rate and are often the culprits behind poor
DDR3 performance. For many applications, a designer’s hands
are tied regarding the ability to combat these DDR3
inefficiencies because of lack of control over the activity across
the DDR3 link. For this application however, the designer has a
priori knowledge of how data will be uploaded from DDR3
memory. Thus, A/B matrix data can be stored in DDR3
memory in such a way that counteracts the latency effects.

Consider the graphical representation of a typical 4Gb
DDR3 address configuration in Figure 8. This particular device
contains eight banks of RAM, with each bank oriented with a
16-bit row address (i.e. 64K rows) and a 10-bit column address
(i.e. 1024 columns).

Since DDR3 memory accesses are burst-oriented, the
startup latency due to row activation applies only to the output
of the first data; all subsequent data of the burst will follow at
line rate. As long as the row address remains constant, no
additional latencies will be incurred. Figure 8 shows that up to
seven contiguous 12x12 matrix blocks can fit within a single
DDR3 row. This allocation would ensure that every matrix
block can be retrieved in its entirety at the DDR3 line rate.

To get the A/B data stored in this manner isn't trivial.
Matrix data is commonly stored in "row major order" or
"column major order," depending on the software technique
used for generating and storing the data. This means that for a
12,000x12,000 array, each row (or column) of 12,000 elements

6

is stored linearly. When the host downloads these arrays into
the FPGA, the FPGA would have to re-map the data on-the-fly
into specific DDR3 addresses to ensure that the 12x12 matrix
blocks are deposited within the same DDR3 row to guarantee
that each stored block can be completely uploaded from DDR3
at line rate. This re-mapping should be transparent during host
download without impacting overall performance.

Figure 8. Typical DDR3 address configuration and block matrix allocation

X. FLOORPLANNING AND TIMING CLOSURE

One of the goals of this project was to pack as many MACs
onto the die as possible. In general, for a given clock
frequency, more MACs means higher performance. At 500
MHz and two floating point operators per MAC, each MAC
effectively contributes 1 GFLOPS of performance to the
overall operation.

Ironically, an FPGA's superior flexibility in the placement
and routing of customizable logic makes it that much more
difficult to estimate how fast a design could possibly perform,
which is why developers will often do preliminary routes. But a
device’s switching specifications can be used as a baseline.

According to the Xilinx Virtex-7 datasheet [10],
configurable logic blocks (CLBs) in a –3 speed grade can be
clocked at a max rate of 685 MHz; a fully pipelined DSP48 can
reach 617 MHz; BRAMs top out at 601 MHz. After examining
these specifications and going through trial iterations using
much smaller MAC arrays, it was deemed that a 12x12 MAC
array clocked at 500 MHz would be attainable with reasonable
effort.

Two factors that directly impact the number of MACs that
can fit on the die are the layout of the fabric resources and the
placement requirements for the arithmetic cores. Figure 9
shows the general arrangement of functional blocks on the
XC7VX690T die. The fabric is comprised of a very large array
of logic slices which are separated by columns of DSP48s and
BRAMs. Some of the layout asymmetries of this device–not
obvious from the figure–should be noted. For instance, there
are three rectangular voids along the right side of the die, each
dedicated to a hard core implementation of a PCIe Gen3x8
link. Since routes between MACs can't travel over these voids,
this is an area vulnerable to difficulties in getting adjacent

MACs to communicate at high frequency, which in turn
hinders the efficiency of packing the MACs onto the die.
Another asymmetry is the ratio of DSP48 columns (18) to
BRAM columns (15). Each MAC relies on both these
resources, so the fact that this ratio isn't 1:1 plays a minor role
in limiting the number of MAC columns that can be mapped
across the die.

Figure 9. Virtex-7 XC7VX690T Layout

For the most part, the number of MACs per column was
strongly determined by the layout requirements of the
multiplier (11 DSP48s) and adder (3 DSP48s) cores created by
the Xilinx Floating Point Operator tool. At 200 DSP48s per
column, simple math dictates that at most 14 MACs (200 / 14)
can be squeezed vertically within the locale of each DSP48
column; hence the choice of the semi-conservative 12x12
MAC array.

A design this challenging often needs a sound floorplanning
strategy to meet timing closure. For this implementation, the
timing results improved each time a new row of MACs was
locked down to a specific area on the die. Timing closure was
reached once all MACs, ram banks, and the two DDR3
controllers were constrained to specific areas of the die.

XI. SQUEEZING MORE PERFORMANCE

One of the key benchmarks for gauging how well a design
takes advantage of an FPGA’s available assets is resource
utilization. For this implementation, 56% of DSP48s and 43%
of BRAM were used. Given the success of reaching timing
closure at 500 MHz for the 12x12 MAC array, these numbers
hint that the XC7VX690T was underutilized to a certain extent,
and that there is enough slack for performance improvement.
For instance, it’s feasible that one more row and column of
MACs can be added to the array while maintaining the same
clock rate, boosting the performance to 169 GFLOPS.

A BRAM’s datasheet timing for a XC7VX690T-3 drops to
529 MHz if cascaded to create larger memories. This was the
case inside each MAC for this implementation, making
BRAMs the clear performance bottleneck. To gain more
performance headroom so that more MACs can be added or to
raise the clock frequency, a potential improvement would be to
eliminate the cascade configuration of the BRAMs.

Another opportunity is the re-generation of the multiplier
and adder cores to reduce each MAC's area. These cores were

7

originally created for highest clock rate possible, which
required maximum pipelining. Since added pipelining requires
more area [12], it's possible that more MACs could be added if
less pipelining were used. Clock frequency would presumably
drop to support lesser-pipelined cores, but this solution might
still yield greater overall performance. With 18 columns of
DSP48s and 15 columns of BRAM available in a
XC7VX690T, a 15x15 array could feasibly be accommodated.
If clock frequency were dropped to, say, 400 MHz to
compensate for the smaller cores, overall performance would
jump to 180 GFLOPS, a 25% increase over the original design
parameters despite the 20% drop in frequency. This type of
tradeoff in determining the optimal combination of clock
frequency with PE density is a critical decision for any parallel
processing environment, especially when factors such as cost
and power consumption are considered.

Yet another area of optimization pertaining to the
arithmetic cores is a change in the precision, rounding and
accuracy requirements. Going from floating point to fixed, for
example, would have a significant postive impact on the
number of operations that could be performed per second.

XII. CONCLUSION

The theoretical performance capacity of the Xilinx Virtex-7
XC7VX690T FPGA for floating point applications was
calculated to be in the range of 257-290 GFLOPS. A floating
point matrix multiply algorithm was implemented in the same
device to gauge its practical performance limits. Based on a
12x12 MAC array, two DDR3 controllers, and several
architectural features designed to ensure uninterrupted systolic
operation of the array, the design reached timing closure at 500
MHz for an overall sustained performance of 144 GFLOPS.
Device utilization statistics and built-in slack indicate that this
design could be improved to extend the practical performance
range to as high as 180 GFLOPS, allowing the FPGA to reach
50-70% of its theoretical floating point capacity.

REFERENCES

[1] D. Strenski, C. Kulkami, J. Cappello, P. Sundararajan, "Latest FPGAs
Show Big Gains in Floating Point Performance," HPCwire.com, April
2012.

[2] S. Sun, J. Zambreno, "A Floating-point Accumulator for FPGA-based
High Performance Computing Applications," Field-Programmable
Technology, pp. 493-499, December 2009.

[3] Y. Dou, S. Vassiliadis, G.K. Kuzmanov, G.N. Gaydadjiev, "64-bit
Floating-Point FPGA Matrix Multiplication," in FPGA '05: Proceedings
the 2005 ACM/SIGDA 13th international symposium on Field-
programamble gate arrays. New York, NY, USA: ACM, 2005, pp. 86-
95.

[4] R. Scrofano, L. Zhuo, V. Prasanna, "Area-Efficient Arithmetic
Expression Evaluation Using Deeply Pipelined Floating-Point Cores,"
Very Large Scale Integration (VLSI) Systems, IEEE Transactions, Feb.
2008.

[5] G. Kuzmanov, W.M. van Oijen, "Floating-Point Matrix Multiplication in
a Polymorphic Processor," ICFPT 2007, pp. 249-252, 2007.

[6] S. Kestur, J.D. Davis, O. Williams, "BLAS Comparison on FPGA, CPU
and GPU," IEEE Computer Society Symposium onVLSI, July 2010.

[7] D.H. Jones, A. Powell, C. Bouganis, P.Y.K. Cheung, "GPU versus
FPGA for high productivity computing, " FPL 2010, IEEE Computer
Society, 2010, pp. 119-124

[8] "DDR3 SDRAM Specification," JEDEC Solid State Technology
Association, July 2010.

[9] "LogiCORE IP Floating Point Operator v5.0, DS335" Xilinx Corp.,
March 2011.

[10] "Virtex-7 FPGAs Data Sheet: DC and Switching Characteristics,
DS183," Xilinx Corp., March 2011.

[11] V.B.Y. Kumar, S. Joshi, S.B. Patkar, H. Narayanan, "FPGA Based High
Performance Double-Precision Matrix Multiplication," in VLSID 2009:
Proceedings of the 2009 22nd International Conference on VLSI Design,
Washington, DC, USA, pp. 341-346. IEEE Computer Society, Los
Alamitos (2009)

[12] G. Govindu, R. Scrofano, V.K. Prasanna, "A Library of Parameterizable
Floating-Point Cores for FPGAs and Their Application to Scientific
Computing," in Proc. of International Conference on Engineering
Reconfigurable Systems and Algorithms, June 2005.

[13] L. Zhuo, G.R. Morris, V.K. Prasanna, "High-Performance Reduction
Circuits Using Deeply Pipelined Operators on FPGAs," IEEE Trans.
Parallel Distrib. Syst., vol. 18, no. 10, pp. 1377-1392, 2007.

[14] M. Huang, D. Andrews, "Modular Design of Fully-pipelined
Accumulators," International Conference on Field-Programmable
Technology (FTP), pp. 118-125, 2010

[15] B. Sukhwani, M. Chiu, Md. A. Khan, M.C. Herbordt, “Effective
Floating Point Applications on FPGAs: Examples from Molecular
Modeling,” HPEC 2009

[16] J. Allred, J. Coyne, W. Lynch, V. Natoli, J. Grecco, J. Morrissette,
“Smith-Waterman Implementation of a FSB-FPGA module using the
Intel Accelerator Abstraction Layer,” IPDPS, pages 1-4, IEEE, 2009

[17] J.W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, K. Vissers,
“A Low-Latency Library in FPGA Hardware for High-Frequency
Trading (HFT),” HOTI, pages 9-16, 2012

8

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
