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I.  INTRODUCTION 
High performance computing (HPC) is a realm of computer 

science that relies on advanced, highly parallel computing 
systems applied specifically to assist scientists, engineers, and 
even financial analysts in executing complex, arithmetically-
intensive algorithms for solving problems in their respective 
areas of study and application. Computer architectures geared 
toward HPC are typically comprised of an array of processing 
elements (PEs) configured to accelerate these complex 
algorithms in a manner that takes advantage of the aggregate 
performance benefits of parallelism. 

As recently as ten years ago, a PE was simply a 
microprocessor operating within the limitations of the 
venerable von Neumann computer architecture. Today, the 
HPC user has three PE technologies to choose from: multi-core 
processors (MCPs), graphics processing units (GPUs), and 
field-programmable gate arrays (FPGAs). For more custom-
targeted computing needs, the Application-specific IC (ASIC) 
or digital signal processor (DSP) devices have been utilized as 
a rare fourth option.  

Many issues come into play when selecting a PE for a 
particular application, such as performance, power, cost, 
complexity, adaptability to a range of algorithms, and 

conformance to a user's computer environment. It also helps if 
the solution adheres to existing standards and protocols. This is 
where FPGAs have lagged behind. Despite three decades on 
the market, designing for an FPGA still requires a set of niche 
skills and use of non-standard development tools that typically 
fall outside the expertise of most HPC users. Furthermore, the 
complexity of an FPGA's development cycle makes pushing its 
theoretical performance limits challenging even to experienced 
developers, giving MCPs and GPUs and their standard 
development platforms a clear advantage in the eyes of many 
system architects and HPC users.  

Nonetheless, there are overwhelming benefits to using 
FPGAs; in some cases, the development effort is worth the 
investment. An FPGA allows the construction of hardware 
architectures that are fine-tuned toward specific applications. 
Bioinformatic algorithms such as Smith-Waterman which are 
commonly used for DNA sequencing alignment match up well 
with an FPGA’s spatial and temporal parallelism capability 
[16]. An FPGA’s superior energy efficiency makes it a 
competitive choice for implementing Basic Linear Algebra 
Subroutines (BLAS), a key library of functions for scientific 
applications [6]. For molecular modeling, an FPGA’s dedicated 
pipeline structures, low latency communication threads, and 
flexible algorithmic restructuring makes it a preferred platform 
for modeling the iterative Newtonian interactions of atoms and 
molecules [15]. The financial world has made huge 
investments in FPGA technology for High Frequency Trading 
(HFT) applications, specifically to take advantage of an 
FPGA’s ability to handle electronic trade data with very low 
latency and minimal jitter [17]. 

 High-end FPGA architectures are generally comprised of 
configurable logic blocks, embedded ram, and hard arithmetic 
cores arranged in a semi-regular pattern. With its sea of 
reconfigurable logic, the FPGA is the ultimate sandbox for 
digital computing, yielding unrivaled flexibility and an inherent 
parallelism that cannot be approached by any other technology.  

As vast as this potential seems for FPGAs, there are 
practical limitations when it comes to crafting an actual design. 
This paper demonstrates these limitations by describing the 
implementation of a floating point matrix multiply function—a 
workhorse of many scientific algorithms—in an architecture 
designed to take full advantage of an FPGA's arithmetic 
computing power. The matrix multiply is a standard linear 
algebra function that greatly benefits from parallelism, where 
tremendous performance gains can be had when accelerated 
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within an HPC platform. It's also used as a standard benchmark 
for evaluating the performance of HPC machines. 

The flow of this paper begins with a look at related work on 
matrix multiplication implementations in FPGAs, followed by 
an analysis of an FPGA's theoretical limits for both optimal 
usage of resources and specifically for matrix multiplication. 
Next, the mechanism for mapping the matrix multiply 
algorithm onto FPGA fabric for this implementation is 
described, with a look at several issues that were addressed for 
overcoming I/O bound performance. Several design techniques 
that were employed to ensure uninterrupted systolic operation 
of the MAC array are described, including the handling of 
heavily-pipelined accumulators, devising an optimal schedule 
for feeding matrix data to the MAC array, and maximizing 
DDR3 memory efficiency. The paper concludes with the 
floorplanning strategy behind packing as many MACs onto the 
FPGA die as possible while meeting timing closure, along with 
potential opportunities for squeezing more performance out of 
the design. 

II. RELATED WORK

Numerous architectures for implementing matrix 
multiplication onto FPGAs have been described in recent years 
[3], [5], [6], [7], [11]. The motivations behind these efforts 
have varied, ranging from creating an efficient, scalable, and 
high performing architecture, to evaluating how an FPGA 
compares to CPUs, MCPs, and GPUs for HPC applications.  

With the ubiquitous matrix multiply algorithm being used 
for this demonstration, many of the same tradeoffs and issues 
discussed in previous work came into play in this design, such 
as I/O bound performance, matrix blocking, and the importance 
of data re-use. But there were architectural differences. While 
others adopted a linear array of PEs with data streaming to and 
from the array through a single endpoint PE, this 
implementation is based on a 2D array of PEs, with data 
distributed into ram banks feeding the array's rows and 
columns. In other work, a host processor interacted directly 
with the FPGA throughout execution, downloading and 
uploading data directly with the FPGA's internal PE array. In 
this architecture, the FPGA executes the algorithm 
autonomously while uploading and downloading data with 
tightly-coupled DDR3 memory. 

III. PUSHING THE THEORETICAL PERFORMANCE ENVELOPE

A key aspect to this demonstration is the use of floating 
point arithmetic, a computing method required for many 
scientific applications where dynamic range and accuracy are 
critical. Not long ago, FPGAs were grossly inefficient with 
these types of calculations; the amount of logic needed to 
realize multiplication was too taxing on fabric resources.  

Times have changed. One of the greatest enablers of 
FPGAs for HPC today is the proliferation of hard multiplier 
cores now available in many high performance FPGA families. 
This has boosted an FPGA's capabilities considerably in 
performing floating point computations. 

The hard multiplier core offered by the Xilinx Virtex 7 
Series family—the highest performing Xilinx family on the 

market today—is the DSP48. The DSP48 contains a 25x18 
multiplier, a 48-bit accumulator, and an assortment of flexible 
options for implementing a number of arithmetic operations. 
It's also the perfect digital hub for creating a floating point 
MAC unit, a key processing element for matrix multiplication. 

The device targeted for this implementation was the Virtex-
7 XC7VX690T, which contains as many DSP48s (3,600) as 
any FPGA offered by Xilinx. The number of DSP48s required 
to realize a single MAC unit—critical to fitting the maximum 
number of MACs on a single die—depends on the desired 
precision and implementation scheme. The LogiCORE IP 
Floating-Point Operator tool [9] from the Xilinx ISE 
development platform can create an assortment of functional 
floating-point operations with various speed-area options, all of 
which impact the number of DSP48s realized. For instance, a 
double precision floating point multiplier configured for high 
speed and maximum usage of hard multipliers within the 
XC7VX690T requires 11 DSP48s.  

According to theoretical analysis in [1], the Virtex 7 Series 
FPGAs can perform double precision floating point arithmetic 
about 4.2 times faster than a 16-core MCP. Based on a scheme 
that allocates the available fabric resources with various 
combinations of arithmetic operator types configured in an 
assortment of realization schemes, the theoretical peak 
performance of the XC7VX690T was measured at 290 
GFLOPS.  

This paper extends this theoretical research by 
implementing as large of a MAC array as practical in the same 
device. With one multiplier and one adder needed per MAC, 
matrix multiplication requires a homogenous set of MAC units 
for repeatability, consistency, and efficiency. For this 
implementation, each adder and multiplier was configured for 
maximum usage of DSP48s to achieve the highest clock 
frequency possible. (Later we'll see that "highest frequency" 
doesn't necessarily lead to highest overall performance.)  

To calculate the theoretical performance limit of the matrix 
multiply application for the XC7VX690T, the maximum 
number of MACs that can fit is determined, along with a target 
operating frequency. As mentioned above, each multiplier 
utilizes 11 DSP48s. Similarly, a floating point adder requires 
three DSP48s. Together, these operators make up a floating 
point MAC unit encompassing 14 DSP48s. Using simple math, 
the number of MACs that could theoretically be accommodated 
inside a XC7VX690T is 257 (3600 DSP48s / 14 per MAC). 
The target clock rate depends on the performance 
specifications. For XC7VX690T in a -3 (highest) speed grade 
[10], it was judged that a clock frequency of 500 MHz could be 
attainable with reasonable effort. Hence, the overall theoretical 
peak performance of a floating point matrix multiply algorithm 
implemented in the XC7VX690T-3 is calculated to be 257 
GFLOPS (2 FLOPs per MAC x 257 MACs x 500MHz), about 
11% less than the optimal combination of adder/multiplier 
types calculated in [1]. 

IV. PROJECTING MATRIX MULTIPLICATION ONTO AN FPGA
The following example demonstrates how the matrix 

multiply architecture was devised for this implementation.  
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In Figure 1, two 4x4 matrices denoted as A and B are 
multiplied together to form a set of results in the form of a C
matrix. Each C matrix term is the result of the dot product 
calculation of an A matrix row vector with a B matrix column 
vector. Since a dot product calculation is nothing more than a 
sequence of multiplication results summed together, each of the 
16 dot products required to produce the 4x4 C matrix can be 
parallelized by mapping them to dedicated arithmetic blocks 
configured as MAC units. 

Figure 1. Mapping of matrix multiply to an FPGA MAC array 

In the previous section, it was calculated that a maximum of 
257 MACs could theoretically fit inside a XC7VX690T. This 
would be enough to contain a 16x16 MAC array. From a 
practical standpoint, however, it would be extremely difficult to 
get an actual implementation close to this theoretical limit. 
There are several reasons why, and each plays a role in the 
final architecture. It’s a process of scaling down what is 
theoretically possible in an FPGA to what is practical. 

V. OVERCOMING I/O BOUND PERFORMANCE

Fabrication technology strongly influences the maximum 
clock frequency and the total number of MACs that could fit on 
a device, two major factors in determining overall performance 
of the matrix multiply algorithm. But the greatest architectural
impact is I/O.   

Targeting this algorithm for HPC, large amounts of data 
would be expected to be transferred to and from an FPGA’s I/O 
pins continuously throughout execution. An I/O link’s inability 
to keep pace with the core processing power of the FPGA is a 
major deterrent to aggregate performance. Because of the 
nature of how I/O technology will always lag behind on-chip 
processing from a raw processing power standpoint, a matrix 
multiplication implementation will become I/O bound unless 
this interaction can be handled efficiently enough to be 
classified as "background traffic."

For this implementation, the I/O bound situation as related 
to a host interface was eliminated by adding local bulk memory 
to the FPGA in the form of two DDR3 modules: a 4GB DIMM 
for storing the input A and B matrices, and a 2GB DIMM for 
holding the C matrix results. These memories essentially 

decouple a host’s interaction from impacting the FPGA's 
overall performance.     

The MAC array's performance can still become I/O bound 
with regard to the DDR3 links. Three architectural 
enhancements were employed to alleviate this: blocking, data 
re-use and local MAC cache. These will be described in the 
following sections.  

VI. MATRIX MULTIPLICATION ARCHITECTURE

The core of the matrix multiplication architecture is a 
12x12 systolic MAC array, shown in Figure 2. A/B matrix data 
are uploaded from DDR3 memory and distributed into ram 
banks that act as gateways into the array's rows and columns. A 
second DDR3 memory link acts as a depository for the array's 
C matrix data results. 

Figure 2. Top view of the matrix multiplication architecture 

The key to the array's systolic operation is the manner in 
which the A/B matrix data is distributed and sequenced, which 
ultimately determines how the array is able to perform 144 dot 
product calculations in parallel throughout its execution.  

Data is staggered into the array and propagated through 
each linear chain so that it can be re-used by each MAC in its 
path. Figure 3 shows how the systolic operation would begin, 
with each cycle time t{i} representing a systolic beat. The array 
becomes saturated shortly after startup and remains so until 
ramping down toward the end of its execution. Because of the 
long duration of performing a matrix multiplication for very 
large arrays, the startup and ramp down times are negligible 
when factored into overall performance. 

Once a MAC has completed a dot product calculation for a 
given set of vector data, it will either deposit the result into its 
local cache as a "partial sum" to be accumulated later for 
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subsequent dot products, or it will output the result as a "final 
sum."  

Several additional design techniques were needed to ensure 
that the MAC array operates in systolic fashion and without 
interruption throughout its execution. These are discussed in 
the next few sections. 

Figure 3. The start of the MAC array's systolic operation 

VII. HANDLING HEAVILY-PIPELINED ACCUMULATORS

The maximum frequency that an FPGA design can be 
clocked is by definition limited by that design's slowest 
combinatorial path. A designer can raise the headroom on 
clock frequency, and in most cases, on overall performance, by 
adding pipeline registers strategically throughout the various 
hardware structures of the architecture.   

Complex functions such as multipliers and adders typically 
require many layers of combinatorial logic. The more 
complicated the function, the more pipeline stages needed in 
order to achieve a certain level of performance. [For a 
component replicated many times in a design such as in an 
array, additional pipelining could actually be a detriment to 
performance because of the increased area; this is addressed in 
section XI, "Squeezing more performance."] 

With pipelining comes latency. A double precision floating 
point multiplier configured for maximum clock rate (as 
generated by the Xilinx tools while targeting a Virtex-7 device) 
contains 16 pipeline stages, corresponding to a latency of 16 
cycles. The ramifications of interfacing with a heavily 
pipelined multiplier in a parallel processing environment is 
minimal in that its inputs and outputs could still be streamed 
continuously at its clock rate; the designer needs only to 
account for the fixed latency as to when to expect valid data on 
its output.  

On the other hand, a heavily pipelined accumulator presents 
a much greater challenge and has an acute impact on the 

overall architecture. Unlike the multiplier, data can't just be 
streamed into a heavily pipelined accumulator because each 
sum it produces needs to be fed back immediately into one of 
its inputs to satisfy the accumulate operation. It’s a classic 
dilemma for system designers and has been thoroughly 
investigated [2], [4], [13], [14]. The simplest option, sufficient 
for most low performance applications, is to simply delay the 
input stream as each accumulation operation runs its course. 
But for higher performance, this solution would cripple data 
throughput. Another option is to replace the accumulator with 
an adder tree fed by an array of multipliers so that the dot 
product multiplications are no longer accumulated at a single 
point, eliminating the feedback requirement. But adder trees 
take up huge amounts of resources that drastically reduce the 
number of MACs that could fit in the FPGA, which in turn 
shrinks overall performance. Other more complex solutions 
have been proposed [2], [4], [13], [14].  

For this implementation, a special technique was adopted 
that didn't require the input stream to be delayed, nor did it 
require additional arithmetic resources. It’s called accumulator 
time-sharing. Instead of sending a continuous stream of 
multiplier results into an accumulator one set at a time, where a 
"set" corresponds to a single dot product calculation, multiplier 
results from multiple sets are interleaved in a manner which 
allows the accumulator to be time-shared. The interleaving 
eliminates the need to use an adder's result immediately, at 
least from one cycle to the next. Instead, the adder results are 
stored in local cache for subsequent feedback into the 
accumulator during a later cycle.  

The number of sets configured to time-share the 
accumulator must be greater than the latency of the 
accumulator, plus additional cycles to account for the path of 
partial sums as they are propagated back into the accumulator. 
For this application, 25 shared sets was determined to be more 
than enough to support a heavily pipelined, 14-stage adder 
while encompassing all latencies associated with the 
propagation chain.   

VIII. BLOCK MATRIX ROLLING SCHEDULE

A "Block Matrix Rolling Schedule" defines the pre-
determined sequence of A and B block matrices that are 
uploaded from DDR3 memory and consumed by the MAC 
array throughout the matrix multiply execution. This section 
describes how the schedule was derived, with the primary goal 
of keeping the systolic MAC array running without 
interruption. 

Performing a matrix multiplication of two 12x12 arrays 
isn't an operation that would provide much benefit if 
accelerated in hardware. But performing a matrix 
multiplication of two 12,000x12,000 arrays would. To handle 
very large arrays, the FPGA processes smaller blocks of the 
arrays in a technique called matrix blocking. To demonstrate 
how matrix blocking works, consider a 12x12 matrix 
multiplication shown in Figure 4.  

The upper left term {0,0} of the C matrix is calculated by 
performing a dot product on the first row vector of the A matrix 
with the first column vector of the B matrix. 

4



Figure 4. Sample dot product for 12x12 matrix multiply 

Now suppose this 12x12 matrix multiplication is to be 
performed on a 4x4 MAC array. One strategy is to split the 
12x12 arrays into sixteen 4x4 blocks, then perform a series of 
4x4 matrix multiplies directly on the 4x4 MAC array. 
Calculating the {0,0} C term would then require four 4x4 
matrix multiplies, as shown in Figure 5. After each matrix 
multiply, a partial sum is generated each time the A block rolls 
right in conjunction with the B block rolling down. The FPGA 
would maintain a running set of partial sums until a final C
term result was reached. 

However, this plan breaks down performance-wise if 
applied literally for very large arrays. The I/O demand for 
uploading A/B matrix data and feeding it into the MAC array 
would far exceed the capable bandwidth of the DDR3 link 
supplying the data, causing the array to stall periodically and 
degrading overall performance. 

Figure 5. Matrix Blocking: 12x12 array split into sixteen 4x4 blocks 

To see this, consider the matrix multiplication of two 
12,000x12,000 arrays on a 12x12 MAC array. In this scenario, 
each of the large arrays is processed in 12x12 blocks to match 
the MAC array. Using the matrix blocking procedure 
demonstrated above, the upper left C array term {0,0} would 
be calculated from a series of one thousand 12x12 matrix 
multiplies performed similar to the flow in Figure 5. 

This sequence is functionally sound. However, if the A/B
"consumption rate"—i.e. the rate that data is consumed by the 
MAC array—is compared to practical DDR3 link rates, it can 
be shown that the MAC array would have to stall periodically 
waiting for new A/B data to be uploaded from off-chip 
memory.  

Consider that a standard DDR3-1600 64-bit DIMM module 
operates at a maximum line rate of 102 Gbps. Because of the 
inefficiencies of DDR3 technology related to inherent latencies 
[8], a 50% efficiency rate is deemed a reasonable goal for this 
link. This would pin the maximum allowed rate of uploading 
A/B matrix data at 51 Gbps.  

The A/B consumption rate is calculated by taking the total 
number of data bits consumed by the MAC array over a 
specific time interval. For the block matrix rolling schedule 
described above, since new A and B matrix blocks are required 
for every 12x12 matrix multiplication, the time of a single 
matrix multiply, 24 nanoseconds (12 systolic clock cycles @ 
500 MHz), is the interval used for consumption calculation. 
Two double precision floating point matrix blocks contain 
18,432 bits (12x12 array x 2 x 64 bits). The corresponding A/B
consumption rate is therefore 768 Gbps (18,432 / 24nsec), a 
rate which far exceeds the 51 Gbps limit set for the DDR3 link. 

If the interleaving method required to handle the heavily 
pipelined accumulators is taken into account, the consumption 
rate can be reduced significantly. A new rolling schedule is 
introduced below which interleaves 25 dot products at one time 
while time-sharing the accumulator. Instead of the A and B
blocks rolling in conjunction with each other, the A block is
kept static while the B block is rolled horizontally 25 times, as 
shown in Figure 6.  

Figure 6. Static “A” block with rolling “B” block 

Keeping the A block static relieves some of the I/O 
demand; instead of 50 blocks needed for 25 matrix multiplies, 
only 26 (1A + 25B) are needed. However, this consumption 
rate (384 Gbps) is still too excessive, though it is important to 
note that the introduction of data re-use made a significant 
contribution here in reducing the I/O demand by 50%. But 
clearly more data re-use is needed.  
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It turned out that the strategy for transferring only the final 
results from the array off chip to its own output DDR3 memory 
helped reduce the A/B consumption rate to a satisfactory level. 
For efficiency, it was decided early on that partial C results 
should not be cached to external DDR3 memory, and that only 
the final results are to be transferred off chip once they have 
been obtained. This decision reduced the overall design 
complexity as well as eliminated the write path from the output 
DDR3 link to the MAC array–greatly improving overall layout 
and performance margins.  

This strategy also required each MAC to maintain a set of 
partial sums locally until final sums are reached. How many 
sums should be stored? The fabric resources would determine 
this. The fundamental size of an embedded block ram (known 
as BRAM) inside the Virtex 7 Series family is 512x32. 
Considering that the XC7VX690T has a capacity of 2,940 
BRAMs, it was deemed reasonable to allocate two BRAMs per 
MAC to hold up to 512 64-bit sums locally. The 512x64 cache 
ram would then be able to hold partial sums for 20 groups of 
25 time-shared dot products at one time.  

With this allocation, a final rolling schedule can be 
described. This schedule is composed of five concentric loops. 
The first three loops are shown graphically in Figure 7. 

Figure 7. First three loops of block matrix rolling schedule 

The first loop, ALPHA, corresponds to the time-sharing of 
25 consecutive dot products, where a single A block is 
multiplied across 25 B blocks. The second loop, BETA,
involves the local cache parameters described above. Since 20 
sets of 25 dot products are to be cached in each MAC at one 
time, BETA essentially repeats ALPHA 20 times for 20 
different A blocks, but for the same set of 25 B blocks. 

Each BETA loop represents a snapshot of the blocks of data 
that can be cached inside the FPGA at one time. Hence, this 
period is the basis for calculating the maximum A/B
consumption rate for this rolling schedule. With 45 blocks 
processed over 500 matrix multiplies (20 A x 25 B), the 
calculated consumption rate is 34.5 Gbps (45x12x12x64 / 500 
x 24 nsec), well within the stated DDR3 link goal of 51 Gbps. 
This means that for this block matrix rolling schedule, as long 
as the DDR3 link for uploading A/B matrix data can run at an 
efficiency of at least 50%, there should be plenty of margin for 
the systolic array to churn uninterrupted. 

IX. MAXIMIZING DDR3 MEMORY EFFICIENCY

DDR3 memories are streamlined to operate at a minimum 
burst length of eight data words. Any access to the memory that 
isn’t a multiple of eight leads to wasted cycles and link 
inefficiency. This would typically be a performance obstacle 
for random memory accesses of varying sizes. But for this 
implementation, the DDR3 bursts are continuous and long 
enough such that any inefficiency is negligible. 

A more common—and often underestimated—detriment to 
DDR3 efficiency are the inherent latencies associated with 
activation and precharge times as memory rows are accessed. 
These latencies are relatively slow compared to the link's 
maximum burst rate and are often the culprits behind poor 
DDR3 performance. For many applications, a designer’s hands 
are tied regarding the ability to combat these DDR3 
inefficiencies because of lack of control over the activity across 
the DDR3 link. For this application however, the designer has a 
priori knowledge of how data will be uploaded from DDR3 
memory. Thus, A/B matrix data can be stored in DDR3 
memory in such a way that counteracts the latency effects. 

Consider the graphical representation of a typical 4Gb 
DDR3 address configuration in Figure 8. This particular device 
contains eight banks of RAM, with each bank oriented with a 
16-bit row address (i.e. 64K rows) and a 10-bit column address 
(i.e. 1024 columns). 

Since DDR3 memory accesses are burst-oriented, the 
startup latency due to row activation applies only to the output 
of the first data; all subsequent data of the burst will follow at 
line rate. As long as the row address remains constant, no 
additional latencies will be incurred. Figure 8 shows that up to 
seven contiguous 12x12 matrix blocks can fit within a single 
DDR3 row. This allocation would ensure that every matrix 
block can be retrieved in its entirety at the DDR3 line rate. 

To get the A/B data stored in this manner isn't trivial. 
Matrix data is commonly stored in "row major order" or 
"column major order," depending on the software technique 
used for generating and storing the data. This means that for a 
12,000x12,000 array, each row (or column) of 12,000 elements 
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is stored linearly. When the host downloads these arrays into 
the FPGA, the FPGA would have to re-map the data on-the-fly 
into specific DDR3 addresses to ensure that the 12x12 matrix 
blocks are deposited within the same DDR3 row to guarantee 
that each stored block can be completely uploaded from DDR3 
at line rate. This re-mapping should be transparent during host 
download without impacting overall performance. 

Figure 8. Typical DDR3 address configuration and block matrix allocation 

X. FLOORPLANNING AND TIMING CLOSURE

One of the goals of this project was to pack as many MACs 
onto the die as possible. In general, for a given clock 
frequency, more MACs means higher performance. At 500 
MHz and two floating point operators per MAC, each MAC 
effectively contributes 1 GFLOPS of performance to the 
overall operation. 

Ironically, an FPGA's superior flexibility in the placement 
and routing of customizable logic makes it that much more 
difficult to estimate how fast a design could possibly perform, 
which is why developers will often do preliminary routes. But a 
device’s switching specifications can be used as a baseline. 

According to the Xilinx Virtex-7 datasheet [10], 
configurable logic blocks (CLBs) in a –3 speed grade can be 
clocked at a max rate of 685 MHz; a fully pipelined DSP48 can 
reach 617 MHz; BRAMs top out at 601 MHz. After examining 
these specifications and going through trial iterations using 
much smaller MAC arrays, it was deemed that a 12x12 MAC 
array clocked at 500 MHz would be attainable with reasonable 
effort. 

Two factors that directly impact the number of MACs that 
can fit on the die are the layout of the fabric resources and the 
placement requirements for the arithmetic cores. Figure 9 
shows the general arrangement of functional blocks on the 
XC7VX690T die. The fabric is comprised of a very large array 
of logic slices which are separated by columns of DSP48s and 
BRAMs. Some of the layout asymmetries of this device–not 
obvious from the figure–should be noted. For instance, there 
are three rectangular voids along the right side of the die, each 
dedicated to a hard core implementation of a PCIe Gen3x8 
link. Since routes between MACs can't travel over these voids, 
this is an area vulnerable to difficulties in getting adjacent 

MACs to communicate at high frequency, which in turn 
hinders the efficiency of packing the MACs onto the die.  
Another asymmetry is the ratio of DSP48 columns (18) to 
BRAM columns (15). Each MAC relies on both these 
resources, so the fact that this ratio isn't 1:1 plays a minor role 
in limiting the number of MAC columns that can be mapped 
across the die.  

Figure 9. Virtex-7 XC7VX690T Layout 

For the most part, the number of MACs per column was 
strongly determined by the layout requirements of the 
multiplier (11 DSP48s) and adder (3 DSP48s) cores created by 
the Xilinx Floating Point Operator tool. At 200 DSP48s per 
column, simple math dictates that at most 14 MACs (200 / 14) 
can be squeezed vertically within the locale of each DSP48 
column; hence the choice of the semi-conservative 12x12 
MAC array. 

A design this challenging often needs a sound floorplanning 
strategy to meet timing closure. For this implementation, the 
timing results improved each time a new row of MACs was 
locked down to a specific area on the die. Timing closure was 
reached once all MACs, ram banks, and the two DDR3 
controllers were constrained to specific areas of the die.   

XI. SQUEEZING MORE PERFORMANCE

One of the key benchmarks for gauging how well a design 
takes advantage of an FPGA’s available assets is resource 
utilization. For this implementation, 56% of DSP48s and 43% 
of BRAM were used. Given the success of reaching timing 
closure at 500 MHz for the 12x12 MAC array, these numbers 
hint that the XC7VX690T was underutilized to a certain extent, 
and that there is enough slack for performance improvement. 
For instance, it’s feasible that one more row and column of 
MACs can be added to the array while maintaining the same 
clock rate, boosting the performance to 169 GFLOPS.  

A BRAM’s datasheet timing for a XC7VX690T-3 drops to 
529 MHz if cascaded to create larger memories. This was the 
case inside each MAC for this implementation, making 
BRAMs the clear performance bottleneck. To gain more 
performance headroom so that more MACs can be added or to 
raise the clock frequency, a potential improvement would be to 
eliminate the cascade configuration of the BRAMs. 

Another opportunity is the re-generation of the multiplier 
and adder cores to reduce each MAC's area. These cores were 
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originally created for highest clock rate possible, which 
required maximum pipelining. Since added pipelining requires 
more area [12], it's possible that more MACs could be added if 
less pipelining were used. Clock frequency would presumably 
drop to support lesser-pipelined cores, but this solution might 
still yield greater overall performance. With 18 columns of 
DSP48s and 15 columns of BRAM available in a 
XC7VX690T, a 15x15 array could feasibly be accommodated. 
If clock frequency were dropped to, say, 400 MHz to 
compensate for the smaller cores, overall performance would 
jump to 180 GFLOPS, a 25% increase over the original design 
parameters despite the 20% drop in frequency. This type of 
tradeoff in determining the optimal combination of clock 
frequency with PE density is a critical decision for any parallel 
processing environment, especially when factors such as cost 
and power consumption are considered. 

Yet another area of optimization pertaining to the 
arithmetic cores is a change in the precision, rounding and 
accuracy requirements. Going from floating point to fixed, for 
example, would have a significant postive impact on the 
number of operations that could be performed per second.  

XII. CONCLUSION

The theoretical performance capacity of the Xilinx Virtex-7 
XC7VX690T FPGA for floating point applications was 
calculated to be in the range of 257-290 GFLOPS. A floating 
point matrix multiply algorithm was implemented in the same 
device to gauge its practical performance limits. Based on a 
12x12 MAC array, two DDR3 controllers, and several 
architectural features designed to ensure uninterrupted systolic 
operation of the array, the design reached timing closure at 500 
MHz for an overall sustained performance of 144 GFLOPS. 
Device utilization statistics and built-in slack indicate that this 
design could be improved to extend the practical performance 
range to as high as 180 GFLOPS, allowing the FPGA to reach 
50-70% of its theoretical floating point capacity. 
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